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Abstract
The quasi-transverse ultrasound absorption in cubic crystals with positive and
negative anisotropies of the second-order elastic moduli is analyzed. The
scattering of the ultrasound by point defects and during anharmonic scattering
processes is considered. The quasi-transverse ultrasound absorption is analyzed
as a function of the wavevector direction in terms of the anisotropic continuum
model. The Landau–Rumer mechanism is considered for anharmonic scattering
processes. Known values of the second- and third-order elastic moduli are used
to calculate parameters determining the ultrasound absorption. It is shown that
the angular dependences of the quasi-transverse ultrasound absorption differ
qualitatively if the anharmonic scattering processes dominate in cubic crystals
with positive and negative anisotropies of the second-order elastic moduli. For
the scattering by point defects and the anharmonic scattering processes, the
angular dependences of the quasi-transverse ultrasound absorption exhibit the
inverse behavior, making it possible to determine the dominating mechanism of
the ultrasound relaxation in the crystals under study.

1. Introduction

A problem encountered in studies of the ultrasound absorption [1–4], the phonon
transport [5, 6] and the thermal emf of the electron–phonon drag [7] in semiconductor and
dielectric crystals is the correct consideration of the effect of the cubic anisotropy on the
spectrum, the oscillation mode polarization and the phonon relaxation rates. When the
temperatures are sufficiently low and the inequality ωqλτ

λ
ph(q, T ) � 1 is fulfilled (τλph(q, T ) =

1/νλph(q, T ), νλph(q, T ) being the phonon relaxation rate and ωqλ the frequency of phonons with
wavevector q and polarization λ, T is the temperature), the dominant contribution to the volume
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absorption of sound waves is due to the scattering by defects, including isotopic scattering, and
normal processes of phonon–phonon scattering (see, e.g., [1, 4]). We shall restrict ourselves
to their consideration in this paper. The isotropic medium approximation [4–6, 8–11], which
is commonly used to estimate the probability of various scattering processes, is inadequate for
germanium, silicon, diamond and other semiconductor crystals having cubic symmetry and a
considerable anisotropy both of the second- and third-order elasticity moduli. The anisotropic
continuum model provides a convenient solution to these problems. In this model, the harmonic
energy of cubic crystals is expressed in term of three second-order elasticity moduli, while the
anharmonic energy in term of six third-order elasticity moduli. Notice that the second- and
third-order elasticity moduli have been determined experimentally for a considerable number
of cubic crystals. Therefore, the phonon relaxation rates calculated in terms of this model
present a reliable basis for the interpretation of experimental data on the ultrasound absorption
and the phonon transport in cubic crystals.

In [12], a working formula for the inelastic energy of a cubic crystal associated with
anharmonicity of lattice vibrations was derived in terms of experimentally determined second-
and third-order elastic moduli (see section 2) and phonon relaxation rates were calculated
for a number of anharmonic relaxation processes. The transverse ultrasound absorption in
cubic Ge, Si and diamond crystals was discussed in [13]. If the cubic anisotropy in the
matrix element describing three-phonon scattering processes was taken into account, the
dependences of the relaxation rates on the wavevector of transverse phonons were shown to
be qualitatively different from the classical linear Landau–Rumer dependence [14]. However,
the analysis [12, 13] was performed in the isotropic approximation for the spectrum and the
polarization of phonons: the effect of the cubic anisotropy on the phonon spectrum was
disregarded in the energy conservation law. Moreover, the vibrational modes were assumed
to be pure (purely longitudinal or purely transverse) modes. As is known [1, 15, 16], quasi-
longitudinal or quasi-transverse vibrations propagate in cubic crystals, while pure modes
propagate only in symmetric directions such as [100], [110] and [111].

The formal anisotropy factor A = 2c44/(c11 − c12) (where ci j denotes second-order
elasticity moduli) was introduced in [17] for characterization of elastic anisotropy of cubic
crystals. According to [18, 19], the crystals under study may be conveniently divided into two
groups depending on whether the anisotropy parameter A is greater or less than unity. However,
the detailed analysis of elastic waves in cubic crystals [20] demonstrated that the effect of the
cubic anisotropy on the spectrum and polarization vectors of vibrational branches is determined
by the dimensionless parameter k − 1 = �C/(c11 − c44) (where �C = c12 + 2c44 − c11).
It is the parameter k − 1 rather than the anisotropy factor A that enters naturally into the
equations for the spectrum and polarization vectors of phonons in cubic crystals [20] (see also
appendix A equations (A.2)–(A.6)). Since the parameters k − 1 and �C have the same sign,
all cubic crystals can be classified into those with the positive (�C > 0) and the negative
(�C < 0) anisotropy of the second-order elasticity moduli depending on the sign of �C
(see [20], table 1). This parameter is zero in isotropic media. The first type (�C > 0) includes
Ge, Si, diamond, InSb, GaSb and GaAs crystals. KCl and NaCl crystals are referred to the
second type (�C < 0). The form of the spectra of vibrational branches and the angular
dependences of polarization vectors of quasi-transverse modes differ qualitatively in crystals
of the first and second types; these characteristics differ just quantitatively in crystals of one
type [20]. The question arises of how this difference influences the behavior of the relaxation
characteristics of cubic crystals: will the angular dependences of the ultrasound absorption in
the crystals of the first and second types have qualitative differences? In other words, will
the ultrasound absorption anisotropy be determined predominantly by the anisotropy of the
harmonic or the anharmonic energy?
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Table 1. Thermodynamic elasticity moduli for the cubic crystals under study, in 1012 dyn cm−2.
The data are adopted from [1, 27–29].

Ge Si Diamond InSb GaSb KCl NaCl GaAs [28] GaAs [29]

c11 1.289 1.657 10.76 0.672 0.885 0.398 0.487 1.1904 1.1877
c12 0.483 0.638 1.25 0.367 0.404 0.062 0.124 0.5384 0.5372
c44 0.671 0.796 5.758 0.302 0.433 0.0625 0.126 0.5952 0.5944
�C 0.54 0.57 2.01 0.3 0.385 −0.211 −0.11 0.54 0.54
c111 −7.10 −8.25 −62.6 −3.56 −4.75 −7.01 −8.8 −6.75 −6.22
c112 −3.89 −4.51 −22.6 −2.66 −3.08 −0.571 −0.571 −4.02 −3.87
c123 −0.18 −0.64 1.12 −1.0 −0.44 0.284 0.284 −0.04 −0.57
c144 −0.23 0.12 −6.74 0.16 0.5 0.127 0.257 −0.7 0.02
c155 −2.92 −3.10 −28.6 −1.39 −2.16 −0.245 −0.611 −3.2 −2.69
c456 −0.53 −0.64 −8.23 −0.004 −0.25 0.118 0.271 −0.69 −0.39
Acub −0.084 0.71 −27.88 1.57 1.7 0.98 2.09 −1.84 0.8
c̃155 −1.63 −1.9 −5.4 −1.54 −2.16 −0.61 −1.41 −1.12 −1.93
c̃111 28.01 32.4 138.1 20.96 31.53 1.62 8.23 24.19 30.53
c̃112 −3.25 −4.1 −10.24 −1.98 −3.64 −1.11 −1.37 −2.58 −3.34

Such analysis was performed [21] for the relaxation rates of quasi-transverse phonons in
terms of the Landau–Rumer mechanism. Unlike earlier calculations, the analysis took into
account exactly the effect of the cubic anisotropy on both the spectrum of the vibrational
branches involved in the energy conservation law and the phonon polarization vectors. The
contributions of the longitudinal components of quasi-transverse vibrations to the phonon
relaxation rates were estimated for the two types of cubic crystals. It was shown that the
quasi-isotropic approximation is not adequate for the quantitative description of the anisotropy
of the relaxation rates of quasi-transverse phonons.

In what follows we shall analyze the angular dependences of the quasi-transverse
ultrasound absorption in cubic crystals of the two types for the scattering by defects and in
terms of the Landau–Rumer mechanism. As to the phonon polarization vectors involved in
the Landau–Rumer mechanism, we shall restrict ourselves to the pure mode approximation
for the quasi-longitudinal vibrations. It has been shown [20] that the error induced by this
approximation is small for quasi-longitudinal phonons: less than 1% in Ge, Si and diamond
crystals, and 3% in KCl. In the case of quasi-transverse phonons moving in directions other than
symmetric ones, the maximum contribution of the longitudinal component to the transverse–
longitudinal vibrations is 27% in KCl, 16.5% in Ge, 10% in Si and 8% in diamond [20]. Thus,
we take into account explicitly the phonon polarization vectors for quasi-transverse phonons,
but use the approximation of pure modes for quasi-longitudinal vibrations. Therefore, our
calculations of the ultrasound absorption in an arbitrary direction of the wavevector will allow
for the contribution of the longitudinal component to the transverse–longitudinal vibrations
similarly to [21]. It will be shown that the angular dependences of the absorption of quasi-
transverse vibrational modes are qualitatively different in cubic crystals with the positive and
the negative anisotropy of the second-order elasticity moduli.

2. Absorption of transverse ultrasound in cubic crystals subject to competitive scattering
on defects and anharmonic scattering processes

If the inequality ωqλτ
λ
ph(q, T ) � 1 (τλph(q, T ) = 1/νλph(q, T ) and ωqλ being the frequency of

a phonon with a wavevector q and a polarization λ) is fulfilled, the ultrasonic wave absorption
αλ(q) with a wavevector q and a polarization λ is proportional to the phonon relaxation rate

3
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νλph(q, T ) (see, e.g., [1–3]):

αλ(q, T ) = νλph(q, T )

2Sλ(q)
, (1)

where Sλ(q) = Sλ(θ, ϕ) is the phonon phase velocity, which depends on the angular variables
θ and ϕ of the vector q, and T is the temperature. Experimental studies of the ultrasound
absorption [1, 22] demonstrated that the inequality ωqλτ

λ
ph(q, T ) � 1 is fulfilled at sufficiently

low temperatures. For example, it holds at temperatures below 50, 100 and 300 K for
germanium, silicon and diamond crystals respectively. Therefore, in what follows we shall
only consider the intervals of temperatures and wavevectors q when this inequality is fulfilled.
In this case, the dominant contribution to the volume absorption of acoustic waves is due to the
scattering by defects, including the isotopic scattering, and normal processes of the phonon–
phonon scattering (see, e.g., [1, 10]). We shall restrict ourselves to the consideration of these
relaxation processes while analyzing the absorption of the long-wave transverse ultrasound
(h̄ωqt � kBT ).

That fluctuation in the mass distribution throughout a crystal cause thermal resistance
was first pointed out by Pomeranchuk [23], who quoted the correct frequency dependence
of the phonon relaxation rate. More detailed consideration of the phonon scattering by static
imperfection was made in [24]. In accordance with [25, 26], the expression for the phonon
relaxation rate subject to the elastic scattering by point defects in cubic crystals is

νphi(q1, λ1) = πGV0ω
2
q1λ1

1

2V

∑

q2λ2

δ(ωq1λ1 − ωq2λ2)|(eq1λ1e
∗
q2λ2

)|2. (2)

Here V0 is the volume per one atom, V is the system volume, eqλ1 is the phonon polarization
vector, and G characterizes the scattering intensity. In the case of the scattering by the isotopic
disorder or impurities of the concentration Ni , the scattering intensity G has the form [24–26]

G = g =
∑

i

Ci

(
�Mi

M̄

)2

, G = V0 Ni [σ 2
1 + (σ2 + σ3)

2], (3)

where g is the isotopic disorder factor, �M = Mi − M̄ , Mi is the mass of the i th isotope,
M̄ = ∑

i Ci Mi is the average mass of the isotope composition, Ci is the concentration of the
i th isotope, while σ1, σ2 and σ3 characterize the contributions from the change of the unit cell
mass, the force constants and the lattice deformation to the scattering cross-section of phonons
by impurities (for more information see [5, 24–26]). Expression (2) can be written in the form

νphi(q1, λ1) = GV0ω
4
q1λ1

16π2
q1λ1(θ1, ϕ1),

q1λ1(θ1, ϕ1) =
∑

λ2

∫ 1

−1
dx

∫ 2π

0
dϕ2

|(eλ1
q1

e∗λ2
q2
)|2

(Sλ2(θ2, ϕ2))3
, x = cos θ2.

(4)

It is easy to show for the isotropic medium that

q1λ1(θ1, ϕ1) = 4π

3

(
1

S3
L

+ 2

S3
t

)
, (5)

where SL and St are velocities of longitudinal and transverse phonons. Using the data on phase
velocities and polarization vectors of phonons [20], we found that in cubic crystals the function
 does not depend on either the polarization or the scattering angles of phonons:
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Table 2. Parameters and the transverse ultrasound absorption in the cubic crystals under study.

B0 1024

(cm4 dyn−2 s−1 K−5)
[100]

BT L L
0

(s−1 K−5)
[100]

αT L L[001]105

(d B/cm)
α∗

T L L t2
[101]

α∗
T L Lt1

[101]
α∗

T L L t1
[111]

α∗
T L L t2

[111]

,
10−16

(s cm−1)3

Ge 0.239 0.87 1.06 0.23 0.64 0.32 0.32 2.88
Si 0.026 0.071 5.27 × 10−2 0.33 0.73 0.37 0.37 0.615
Diamond 1.3 × 10−5 0.0057 1.93 × 10−3 0.11 0.798 0.31 0.31 0.052
InSb 5.23 2.43 4.61 0.47 0.86 0.39 0.39 11.66
GaSb 1.418 1.42 2.22 0.41 0.7 0.36 0.36 6.25
KCl 88.67 0.627 1.54 107 0.48 85 85 9.47
NaCl 19.32 1.13 2.03 37 1.37 25 25 5.28
GaAs [28] 0.333 1.81 2.35 0.157 0.65 0.29 0.29 3.6
GaAs [29] 0.333 0.91 1.18 0.27 0.67 0.33 0.33 3.6

q1λ1(θ1, ϕ1) =  = 4π

3

(〈
1

S3
L

〉
+

〈
1

S3
t1

〉
+

〈
1

S3
t2

〉)
,

〈
1

S3
λ

〉
= 1

4π

∫
sin θ dθ dϕ

1

(Sλ(θ, ϕ))3
.

(5a)

The values of  for the crystals under study are given in table 2. So, the relaxation rates of
phonons during their elastic scattering by defects in cubic crystals are equal for longitudinal
and transverse phonons and depend only on the scattered phonon energy:

νphi(q1, λ1) = π

6
GV0ω

2
q1λ1

D(ωq1λ1),

D(ωq1λ1) = 1

V

∑

q2λ2

δ(ωq1λ1 − ωq2λ2) = 3

(2π)3
(ωq1λ1)

2.
(6)

Expression (6) can be written in the form

νphi
∼= Bi T

4
q , Tq ≡ h̄ωqt/kB, Bi = G(h̄/kB)

4(V0/8π
2), (6a)

where Tq is the ultrasonic quantum energy in Kelvin. Expression (6) for the scattering by the
isotopic disorder in cubic crystals coincides with the equation derived in [25, 26].

In accordance with the prevailing concepts [1–6, 8–11], the main mechanism of the
transverse phonon relaxation in normal three-phonon scattering processes is the Landau–Rumer
mechanism [14] when the merging of the transverse and the longitudinal phonon produces
a longitudinal phonon (T + L → L). The expression for the relaxation rate of phonons
moving in an arbitrary direction relative to the crystallographic axes of crystals was obtained
for this mechanism in terms of the anisotropic continuum model in [20]. Unlike earlier
calculations, this expression exactly allows for the effect of the cubic anisotropy both on the
spectrum of the vibrational branches involved in the energy conservation law and on the phonon
polarization vectors. In the long-wave approximation, at temperatures much lower than the
Debye temperature the relaxation rate has the form [21]

νT L L(θ1, ϕ1) = BT L L
0 (θ1, ϕ1)TqT 4, BT L L

0 (θ1, ϕ1) = B0 J (θ1, ϕ1),

B0 = π3k5
B

15h̄4ρ3St(θ1, ϕ1)〈SL〉8
,

(7)

5
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where

J (θ1, ϕ1) =
∫ 1

−1
dx

1

π

∫ 2π

0
dϕ2δ(cos θ12 − S∗∗)

I (θ2, ϕ2, θ1, ϕ1)

(1 +�2)8
, x = cos θ2,

S∗∗ = lim
y→0

[S∗(1 −�2)+ (�2 −�3)/y], S∗ = St(θ1, ϕ1)/SL

cos θ12 = sin θ1 cos(ϕ2 − ϕ1) sin θ2 + cos θ1 cos θ2.

(8)

Here ρ is the density, while the variables θ1 and ϕ1 determine the direction of the sound
wavevector q1 relative to the crystallographic axes. The spectrum and the polarization vectors
of the vibration modes in an arbitrary direction of the wavevector were determined in a system
of coordinates connected with the cube edges. The anisotropy of the spectra is associated with
the anisotropy in the phonon phase velocities Sλ(θi , ϕi), which are functions of the angles
θi and ϕi of the vectors qi (see appendix A). The quantities �L

2 (θ2, ϕ2) and �L
3 (θ3, ϕ3)

characterize the anisotropy of the phase velocity of longitudinal phonons with the wavevectors
q2 and q3:

�L
i (θi , ϕi ) = (SL

i (θi , ϕi )− 1)/SL,

SL = 〈SL (θ, ϕ)〉 = 1

4π

∫
sin θ dθ dϕ SL(θ, ϕ), i = 2, 3.

(9)

Considering the law of phonon momentum conservation, the angular variables θ3 and ϕ3 of the
vector q3 are expressed as the angular variables θ1, ϕ1 and θ2, ϕ2 of the wavevectors q1 and q2

(for more information see [21]). Then we find the cubic harmonics ξ3 and η3:

ξ3 = (1 − ψ3)ψ3 + ψ2
4 , η3 = ψ3ψ

2
4 ,

ψ3 = (cos θ3)
2 = (cos θ2 + y cos θ1)

2/(1 + y2 + 2y cos θ12), y = q1/q2,

ψ4 = (sin θ3)
2 sin ϕ3 cos ϕ3 = (sin θ2 sin ϕ2 + y sin θ1 sinϕ1)

(1 + y2 + 2y cos θ12)
(sin θ2 cosϕ2 + y sin θ1 cos ϕ1).

(10)

The maximum |�L(θ, ϕ)| values are 0.08, 0.07 and 0.04 for Ge, Si and diamond crystals
respectively; therefore, the terms linear in �L(θ, ϕ) alone can be taken into account, whereas
the quadratic terms can be neglected. This approximation is accurate to within 1%. The explicit
expression for the three-phonon matrix element is lengthy and is given in appendix B. The
expression for the matrix element describing the three-phonon scattering of quasi-transverse
phonons for the Landau–Rumer mechanism in the long-wave approximation has the form [21]

I (θ1, ϕ1, θ2, ϕ2) =
(

2
q1q3

2

q3

)−2

|V T L L
q1q2q3

|2 = {Acub(e1n2) cos θ12 + (2c̃155 −�C)NC

+ 2c̃155N155 + 0.5c̃111 N111 + c̃112 N112

+ (e1n1)[0.5c̃112�N112 + 0.5c̃123 + (0.5c12 + c144)]}2, (11)

where

Acub = c12 + 3c44 + 2c144 + 4c456, y = q1

q2
= z1

z2

(1 +�2)

S∗(θ1, ϕ1)
,

NC =
∑

i

n1i n
2
2i [(e1n2)n2i + 0.5e1i] , N112 =

∑

i

e1i n1i n
2
2i ,

N111 =
∑

i

e1i n1i n
4
2i , N155 =

∑

i

e1i n
2
2i [n2i cos θ12 + 0.5n1i ],

�N112 =
∑

i

n2
2i n

2
2i , �N155 =

∑

i

n1i n
3
2i ,

c̃111 = c111 − 3c112 + 2c123 + 12c144 − 12c155 + 16c456,

�C = c12 + 2c44 − c11,

c̃112 = c112 − c123 − 2c144, c̃155 = c155 − c144 − 2c456,

(12)

6
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where n = q/q = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) is the unit vector of a phonon, ci j

denotes the second-order elasticity moduli, and ci jk stands for the third-order elasticity moduli.
The first term proportional to Acub in (10) corresponds to the isotropic scattering, while the
other terms containing the third-order elasticity moduli c̃111, c̃112, c̃155 and �C correspond to
the anisotropic scattering. These terms distinguish cubic crystals from isotropic media: they
turn to zero in the isotropic medium model [12]. In the case where the wavevector q1 is directed
along the z axis (n1 = [001]) and the polarization vector is e1 = {1, 0, 0}, we have (e1n1) = 0
and e1i n1i = 0 for any value of i and also we have N111 = N112 = 0 and cos θ12 = cos θ2.
Then the explicit expression for the matrix element (see appendix B equation (B.1)) leads to
the result ([12], equation (14))

V T L L
q1q2q3

= 2
q1q3

2

q3
sin θ2 cos ϕ2(0.5y + cos θ2) · {Acub(1 + y cos θ2)

+ 2c̃155(sin θ2)
2(cosϕ2)

2 + (2c̃155 −�C) cos θ2(y + cos θ2)}. (13)

In the long-wavelength limit (y � 1), expression (13) agrees with the result obtained by
Simpson [18]. To check this agreement in terms of the function I1(θ) [18], we shall deduce the
expression for the square of the matrix element averaged over the angle ϕ2.

∫ 2π

0
dϕ2|V T L L

q1q2q3
|2 =

(
q1q3

2

q3

)2

I1(θ),

I1(θ) = 4π(sin θ2 cos θ2)
2(P1 − M1(sin θ2 cos θ2)

2 − N1(sin θ2)
2),

(14)

where the expressions for the coefficients P1, M1 and N1 in [18] are simpler in our notation:

P1 = (c11 + c44 + 2c155)
2, M1 = 0.5 · ((2c̃155 −�C)2 + (�C)2),

N1 = P1 · (2c̃155 −�C)− M1.
(15)

Obviously, the coefficients M1 and N1 vanish at the transition to the isotropic medium model.
It should be noted that in the arbitrary direction of the wavevector q1, unlike the [001] direction
considered in [12], the matrix element (11) includes new terms proportional to the third-order
elasticity moduli c̃111 and c̃112, as well as the term proportional to (e1n1), which takes into
account the longitudinal component of the transverse–longitudinal vibrations.

According to Matthiessen’s rule, the scattering by defects and the normal processes of
the phonon scattering in the Landau–Rumer mechanism make an additive contribution to the
transverse sound relaxation. Therefore, formulae (1) and (6)–(12) give for the absorption:

αT (θ1, ϕ1, T ) = 8.68(BT L L
0 (θ1, ϕ1)TqT 4 + Bi T

4
q )/2St(θ1, ϕ1) (d B/cm). (16)

It is seen from (16) that at T � Tq the coefficient αT tends to the constant, which is
characteristic of the scattering on defects, while at T � Tq it follows the T 4 dependence
typical of the Landau–Rumer mechanism. Formulae (6)–(12) and (16) can be used to calculate
dependences of the ultrasound absorption on the direction of the quasi-transverse wavevector
when the cubic anisotropy is taken into account exactly in the energy conservation law subject
to the competition between the anharmonic scattering processes and the scattering by defects.
For analysis of these dependences, we shall introduce the dimensionless coefficient α∗

T (θ1, ϕ1)

characterizing the change of the ultrasound absorption relative to the [001] direction:

α∗
T (θ1, ϕ1) = αT (θ1, ϕ1)

αT [100](0, 0, T )
= St

[100]
St(θ1, ϕ1)

(
BT L L

0 (θ1, ϕ1)T 4 + Bi T 3
q

)
(
BT L L

0[100]T 4 + Bi T 3
q

)

=
(

St
[100]

St(θ1, ϕ1)

)2 (
J (θ1, ϕ1)T 4 + Bi T 3

q St(θ1, ϕ1)
)

(
J[100]T 4 + Bi T 3

q St
[100]

) . (17)

7
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Figure 1. Angular dependences of the reduced ultrasound absorption α∗
i (θ1, ϕ1) for the quasi-

transverse mode t2 in the case of the scattering by defects.

The ultrasound absorption in the [001] direction is defined as

αT [100] = (
AT L L

[100]TqT 4 + Ai[100]T 4
q

)
(d B/cm),

AT L L
[100] = 4.34

St
[100]

BT L L
0[100], Ai[100] = 4.34

St
[100]

Bi .
(18)

It follows from (17) that for the scattering by point defects the coefficient α∗
i (θ1, ϕ1) has the

form

α∗
i (θ1, ϕ1) = St

[100]/St(θ1, ϕ1). (19)

In the case of the Landau–Rumer mechanism, the ultrasound absorption anisotropy
α∗

T L L(θ1, ϕ1) is defined by the expression

α∗
T L L (θ1, ϕ1) = St

[100]
St(θ1, ϕ1)

BT L L
0 (θ1, ϕ1)

BT L L
0[100]

=
(

St
[100]

St(θ1, ϕ1)

)2
J (θ1, ϕ1)

J[100]
. (20)

We shall show below that the ultrasound absorption anisotropies are considerably different for
the aforementioned two cases.

3. Results of numerical analysis of transverse ultrasound absorption in cubic crystals

Let us analyze the angular dependences of the acoustic wave absorption for the two most
important cases: (1) the acoustic wavevectors q1 are in the cube face plane (ϕ1 = 0); (2) the
acoustic wavevectors q1 are in the diagonal plane (ϕ1 = π/4). These dependences are shown
in figures 1–5 for cubic crystals with the positive (Ge, Si, diamond, GaSb, InSb and GaAs) and
the negative (KCl and NaCl) anisotropy of the second-order elasticity moduli. The calculations
were made using experimental values of the thermodynamic elasticity moduli of the second cik

and third ci jk orders, which were adopted from [1, 27–29] (see table 1).
It should be noted first that in the case of the scattering by defects, the ultrasound

absorption anisotropy is determined by the harmonic energy anisotropy. The angular
dependences of the transverse ultrasound absorption in the cubic crystals of the first and second
types are qualitatively different (see figure 1). For example, for a quasi-transverse mode t2,
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(a) (b)

Figure 2. Angular dependences of the absorption α∗
T L L t1(θ1, 0) for the pure mode t1 with the

wavevector in the cube face plane and the polarization vector perpendicular to this plane in the case
of the Landau–Rumer mechanism: (a) crystals of the first type; (b) crystals of the second type.
Dashed curves 4′, 6′: scattering by defects.

(a) (b)

Figure 3. Angular dependences of the absorption α∗
T L L t2(θ1, 0) for the quasi-transverse mode t2

with the wave and the polarization vector in the cube face plane for the case of the Landau–Rumer
mechanism: (a) crystals of the first type; (b) crystals of the second type. Curve 4a: InSb in the pure
mode approximation.

whose wave and polarization vectors are in the cube face plane (ϕ1 = 0), the absorption
α∗

i t2(θ1, 0) is maximum and minimum in the [101] and [001] crystallographic directions
respectively in the Ge, Si, diamond, InSb, GaSb and GaAs crystals. The absorption α∗

it2(π/4, 0)
is equal to 1.29, 1.25, 1.1, 1.41, 1.34 and 1.35 in the Ge, Si, diamond, InSb, GaSb and GaAs
crystals, respectively. In the crystals of the second type (KCl, NaCl), these dependences exhibit
the inverse behavior (the absorption maxima and minima exchange places): the absorption
α∗

i t2(θ1, 0) is maximum in directions like [101] and minimum in directions like [001]. The
absorption α∗

it2(π/4, 0) is equal to 0.61 and 0.83 in KCl and NaCl, respectively.
If the anharmonic processes play the dominant role, the ultrasound absorption anisotropy

is determined by both the harmonic energy anisotropy and the anharmonic energy anisotropy in
the crystals. In this case, the angular dependences of the absorption α∗

T L L t2(θ1, ϕ1) are inverse

9
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(a) (b)

Figure 4. Angular dependences of the absorption α∗
T L L t1(θ1, π/4) for the pure mode t1 with

the polarization vector perpendicular to the diagonal plane in the case of the Landau–Rumer
mechanism: (a) crystals of the first type; (b) crystals of the second type. Dashed curves 4′, 5′
and 6′: scattering by defects in the InSb, GaSb and KCl crystals, respectively.

(a) (b)

Figure 5. Angular dependences of the absorption α∗
T L L t2(θ1, π/4) for the quasi-transverse mode

t2 with the wave and the polarization vector in the diagonal plane in the case of the Landau–Rumer
mechanism: (a) crystals of the first type; (b) crystals of the second type. Curve 4a: InSb in the pure
mode approximation. Dashed curves 4′, 5′ and 6′: scattering by defects in the InSb, GaSb and KCl
crystals, respectively.

to those for the scattering by defects. In the crystals of the first type (Ge, Si, diamond, InSb,
GaSb and GaAs), the absorption α∗

T L L t2(θ1, ϕ1) is maximum in crystallographic directions
like [100] (Ge, Si and diamond) and directions near [100] (InSb, GaSb and GaAs), while the
minimum is observed in directions like [101] and [111]. On the contrary, in the crystals of the
second type (KCl and NaCl), the absorption α∗

T L L t2(θ1, ϕ1) is maximum in crystallographic
directions like [101] and [111], and minimum in directions like [001]. The maximum
absorption in the ionic KCl and NaCl crystals proves to be two orders of magnitude larger
than the maximum absorption in Ge, whereas these values are similar with respect to their
order of magnitude in crystallographic directions like [100]. Thus, the angular dependences
of the absorption are qualitatively different for the crystals of the first and second types. The
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absorption decreases in the crystals of the first type by nearly one order of magnitude in going
from Ge to Si and Si to diamond. This decrease is explained mainly by the change of the
coefficient B0 (see formula (7)), which depends on the second-order elasticity moduli (see
table 1). The coefficient B0 decreases by one order of magnitude in going from Ge to Si
and by three orders of magnitude in going from Si to diamond. However, the two orders of
magnitude are compensated in the diamond crystals by large values of the third-order elasticity
moduli, which determine the probability of the anharmonic scattering processes (see table 1).
The growth of the absorption by two orders of magnitude in KCl is due mainly to the change
of the parameter B0, which depends on the second-order elasticity moduli (see table 2). They
are significantly smaller than the moduli in the Ge and InSb crystals (see table 1). Notice that
values of the second-order moduli and those of the sound velocity, given in [1] for GaAs, are
incorrect. In this section we use values of the second- and third-order elasticity moduli obtained
in [29] for GaAs. In this connection the results, obtained in [20, 21] for GaAs, are incorrect.

Let us consider in more detail the dominant role of the anharmonic scattering processes
for the acoustic wavevectors q1 in the cube face plane (ϕ1 = 0). The isotropic mode
t1(St1(θ1, 0) = √

c44/ρ = const), whose polarization vector is perpendicular to the cube face at
hand, is a fast mode in the crystals of the first type and a slow mode in the crystals of the second
type. In the case of the scattering by defects, the absorption α∗

it1(θ1, 0) of this mode is isotropic
in the crystals of both the first and second types. In terms of the Landau–Rumer mechanisms,
the absorption α∗

T L L t1(θ1, 0) changes little with the angle θ1 in the Ge, Si, diamond, InSb and
GaSb crystals (see figure 2(a), curves 1–5). The absorption α∗

T L L t1(θ1, 0) reaches its minimum
in [101] directions (θ1 = π/4) in compounds of the first group. The α∗

T L L t1(π/4, 0) values are
0.64, 0.73, 0.8, 0.85, 0.7 and 0.67 for Ge, Si, diamond, InSb, GaSb and GaAs, respectively. The
α∗

T L L t1(θ1, 0) values are maximum in [001] directions in the Ge and diamond crystals. Unlike
in Ge and diamond, local minima are observed in [001] directions in InSb, GaSb, GaAs and
Si. The absorption α∗

T L L t1(θ1, 0) is maximum at the angles θ1 = nπ/2 ± 0.3, nπ/2 ± 0.19,
nπ/2 ± 0.16 and nπ/2 ± 0.13 (n = 0, 1, 2 etc) and is equal to 1.18, 1.05, 1.09 and 1.002
for InSb, GaSb, GaAs and Si crystals, respectively (see figure 2(a), curves 2, 4 and 5). The
ratio between the minimum and maximum values is 0.73, 0.67, 0.68 and 0.73 in InSb, GaSb,
GaAs and Si, respectively. These specific features of the absorption in the InSb, GaSb, GaAs
and Si crystals are due mainly to the anharmonic energy anisotropy. The point is that in the
case of the pure mode t1 with n1 = {sin θ1, 0, cos θ1} and the polarization vector e1 = {0, 1, 0},
(e1n1) = 0 and e1i n1i = 0 at all i , while N111 = N112 = 0. Therefore, the matrix element (11)
only contains the terms proportional to the third-order elasticity moduli Acub and c̃155:

I (θ1, ϕ1, θ2, ϕ2) = n2
2y[(Acub + 2c̃155n2

2y) cos θ12 + (2c̃155 −�C)(n1x n3
2x + n1zn3

2z)]2. (21)

The moduli Acub and c̃155 have opposite signs in these crystals (see table 1). Therefore, the
contributions of the isotropic (Acub) and anisotropic (c̃155) scatterings to the absorption are
mutually compensated to a large extent, unlike in Ge and diamond, where this compensation
is absent. Since the compensation is larger in InSb than in GaSb and Si, the dependence
α∗

T L L t1(θ1, 0) has a deeper minimum in directions like [100]. Thus, the local minima in the
dependences α∗

T L L t1(θ1, 0) for the [100] directions in the InSb, GaSb, GaAs and Si crystals
appear due to the mutual compensation of the terms proportional to the elasticity moduli Acub

and c̃155 in the matrix element of the three-phonon scattering processes.
For the Landau–Rumer mechanism, the angular dependences of the ultrasound absorption,

α∗
T L L t1(θ1, 0), are more complicated in the KCl and NaCl crystals of the second type than

they are in the crystals of the first type (see figure 2(b)). The absorption α∗
T L L t1(θ1, 0) has

the maximum value of 1.32 in the KCl crystal at the angle θ1
∼= nπ/2 ± 0.25 and the

minimum value of α∗
T L L t1(π/4, 0) = 0.48 at the angle θ1 = π/4. At the angles θ1 = 0,

11
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θ1
∼= 0.44, θ1

∼= 1.13 and θ1 = π/2 the function α∗
T L L t1(θ1, 0) has four local minima. The

maximum values of α∗
T L L t1(θ1, 0) at the angles θ1

∼= nπ/2 ± 0.25 are nearly three times as
large as the minimum values of α∗

T L L t1(π/4, 0). In the NaCl crystal the maximum absorption
α∗

T L L t1(θ1, 0) equal to 1.37 is observed in directions like [101] (θ1 = π/4), while the minimum
α∗

T L L t1(θ1, 0) = 0.76 is achieved at the angles θ1
∼= 0.44 and 1.13. In directions like [001]

(θ1 = 0, π/2) the function α∗
T L L t1(θ1, 0) has two local maxima. The angular dependences

α∗
T L L t1(θ1, 0) are different in the crystals of the second group because the elasticity moduli

Acub and c̃155 have opposite signs in the KCl and NaCl crystals and their contributions to the
absorption are mutually compensated to a greater (KCl) or lesser (NaCl) extent.

In the case of the quasi-transverse mode t2 with the wave and polarization vectors in
the cube face plane and the anharmonic scattering processes playing the dominant role, the
absorption α∗

T L L t2(θ1, 0) in the crystals of the first and second types changes to a greater degree
than in the case of the pure mode t1 (see figures 3(a) and (b)). In the crystals with the positive
anisotropy of the second-order elasticity moduli, the absorption α∗

T L L t2(θ1, 0) is minimum in
[101] directions (θ1 = π/4). Here α∗

T L L t2(π/4, 0) equals 0.23, 0.33, 0.11, 0.47, 0.4 and
0.27 in Ge, Si, diamond, InSb, GaSb and GaAs, respectively. The maximum α∗

T L L t2(θ1, 0)
values are achieved in [001] directions in the Ge, Si and diamond crystals, whereas local
minima are observed in these directions in InSb, GaSb and GaAs. The maximum values of
the absorption α∗

T L L t2(θ1, 0) are achieved at the angles θ1
∼= nπ/2 ± 0.19, nπ/2 ± 0.1 and

nπ/2 ± 0.07 (n = 0, 1, 2 etc) and are equal to 1.3, 1.02 and 1.007 in InSb, GaSb and GaAs,
respectively (see figure 2(a), curves 4 and 5). The ratio of the minimum to maximum values
of the absorption α∗

T L L t2(θ1, 0) is 0.36, 0.39 and 0.26 in InSb, GaSb and GaAs, respectively.
As distinct from the pure mode t1 discussed above, all the terms of the matrix element (11)
contribute to the absorption of the quasi-transverse mode t2. The symmetric maxima, which
appear in the dependences α∗

T L L t2(θ1, 0) in directions like [001] in the InSb, GaSb and GaAs
crystals, are due to both the anisotropy of the anharmonic and the harmonic energy of the
crystals. The anisotropy of the harmonic energy of the crystals gives rise to the longitudinal
component of the quasi-transverse mode t2, which plays a dominant role in the formation
of the symmetric maxima. Figure 3(a) (dashed line 4a) presents the dependence of the
mode t2 absorption in InSb as an approximation of the pure mode, i.e. when the polarization
vector of the quasi-transverse mode is replaced by the polarization vector of the pure mode
(et2

0 = (cos θ1, 0,− sin θ1)). In this case, the local minima near directions like [001] vanish for
the pure mode t2 in the InSb, GaSb and GaAs crystals. It should be noted that the anisotropy
of the anharmonic energy of InSb, GaSb and GaAs is also important for the realization of
this specific feature. The point is that in Ge the maximum contribution of the longitudinal
component to the mode t2 is 15.5%, which differs little from 15–16% in InSb, GaSb and GaAs.
However, the dependence α∗

T L L t2(θ1, 0) exhibits a clear-cut maximum in the [100] direction in
the Ge crystal. As indicated above, the absorption of the ultrasound propagating along the cube
edges is contributed only by the terms proportional to the third-order elasticity moduli Acub and
c̃155 (see formula (21)), which have opposite signs in the InSb, GaSb and GaAs [29] crystals
(see table 1). Consequently, their contributions are mutually compensated to a great extent
and, therefore, the ultrasound absorption in these directions is considerably smaller than the
absorption in Ge, where this compensation is absent. Since the compensation is more complete
in InSb than in GaSb and GaAs, a deeper minimum is formed in the dependences α∗

T L L t2(θ1, 0).
Thus, the appearance of local maxima in α∗

T L L t2(θ1, 0) near [100] directions in the InSb, GaSb
and GaAs crystals is due to both the longitudinal component of the quasi-transverse mode t2

and the mutual compensation of the terms proportional to the third-order elasticity moduli Acub

and c̃155 in the matrix element of the three-phonon scattering processes. According to relevant
estimates, the maximum contribution of the longitudinal component to the absorption of quasi-
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transverse modes is 50% in InSb, 36% in GaAs, 34% in GaSb, 30% in Ge and Si and 6% in
diamond. The comparison of figures 1 and 2(a) shows that in the case of the scattering by
defects the angular dependences of the absorption, α∗

it2(θ1, 0), in the crystals of the first type
are inverse to the corresponding dependences observed in the case of the anharmonic scattering
processes.

For the quasi-transverse mode t2, the angular dependences of the ultrasound absorption in
the crystals of the second type (KCl and NaCl) are inverse to the corresponding dependences
in the crystals of the first type (see figure 3(b), curves 6 and 7). The absorption α∗

T L L t2(θ1, 0)
in KCl and NaCl increases sharply from the minimum at θ1 = 0, reaches the maximum at
θ1 = π/4 and decreases to the initial value at θ1 = π/2. The dependence α∗

T L L t2(θ1, 0)
includes maxima in [001] and [100] directions, and minima in the [101] direction. The
absorption α∗

T L L t2(π/4, 0) is 107 and 37 in KCl and NaCl, respectively. The maximum
contribution of the longitudinal component to the absorption of the mode t2 is 22% in KCl and
3% in NaCl. The comparison of figures 1 and 3(b) demonstrates that the angular dependences
of the ultrasound absorption in KCl and NaCl observed for the scattering by defects are inverse
to those in the case of the anharmonic scattering processes: the positions of the maxima and
the minima are reversed.

For the pure mode t1 with the wavevector in the diagonal plane (ϕ1 = π/4) and the
polarization vector perpendicular to this plane, the absorption α∗

T L L t1(θ1, π/4) is maximum
in the [001] direction in Ge, Si, diamond, InSb, GaSb and GaAs (see figure 4(a), curves 1–
5). As the angle θ1 decreases, the absorption diminishes to its minimum value in the [110]
direction (θ1 = π/2) in the Ge, Si and diamond crystals and equals 0.32, 0.33 and 0.11,
respectively (see figure 4(a), curves 1–3). In InSb, GaSb and GaAs the absorption reaches
its minimum values at angles near θ1

∼= π/4, while a local maximum appears in the [110]
direction in these crystals (see figure 4(a), curves 4 and 5). Notice that the relationship
α∗

T L L t1(π/2, π/4) = α∗
T L L t2(π/4, 0) holds for the absorption referring to different modes.

The situation is reverse in the crystals of the second group (KCl and NaCl): the absorption
α∗

T L L t1(θ1, π/4) is minimum in the [001] direction (θ1 = 0), increases monotonically with
the angle θ1 and becomes maximum in the [110] direction (see figure 4(b), curves 1 and 2).
The absorption α∗

T L L t1(π/2, π/4) is 107 and 37 in KCl and NaCl, respectively. In the case
of the scattering by defects, in contrast to the anharmonic scattering processes, the absorption
becomes maximum in the [110] direction and minimum in the [001] direction in the crystals
of the first group (see figure 4(a), curves 4′ and 5′). The situation is reverse in the crystals of
the second group. The absorption α∗

it2(π/2, π/4) equals 1.20, 1.17, 1.07, 1.26, 1.23, 1.19, 0.68
and 0.87 for Ge, Si, diamond, InSb, GaSb, GaAs, KCl and NaCl, respectively.

For the quasi-transverse mode t2 with the polarization vector in the diagonal plane (ϕ1 =
π/4), the absorption α∗

T L L t2(θ1, π/4) in the Ge, Si and diamond crystals is also considerably
different from the absorption in the InSb, GaSb and GaAs crystals (see figure 5(a), curves
1–5). The absorption α∗

T L L t2(θ1, π/4) has minimum values in the crystals of the first group
at angles θ1

∼= π/4 and equals 0.27, 0.33, 0.23, 0.38, 0.34 and 0.29 for Ge, Si, diamond,
InSb, GaSb and GaAs, respectively. In Ge, Si and diamond the absorption α∗

T L L t2(θ1, π/4)
decreases from the maximum value in the [001] direction (θ1 = 0), becomes minimum at angles
θ1 ≈ π/4, increases again and then at θ1 = π/2 approaches the value of α∗

T L L t1(π/4, 0), which
corresponds to the fast mode in the cube face plane at θ1 = π/4 (see figure 5(a), curves 1–3).
Local minima appear in the [100] direction in InSb, GaSb and GaAs, unlike in the Ge, Si and
diamond crystals. The absorption α∗

T L L t2(θ1, π/4) is maximum at angles θ1 = nπ/2 ± 0.22,
nπ/2±0.16 and nπ/2±0.15 and equals 1.6, 1.15, 1.09 for InSb, GaSb and GaAs, respectively
(see figure 5(a), curves 4 and 5). The ratio of the minimum to maximum values of the absorption
α∗

T L L t2(θ1, π/4) is 0.36, 0.39 and 0.27 for InSb, GaSb and GaAs, respectively. As noted
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above, local maxima in the dependence α∗
T L L t2(θ1, π/4) near the [100] direction in the InSb,

GaSb and GaAs crystals appear due to both the longitudinal component of the quasi-transverse
mode t2 and the mutual compensation of the terms proportional to the third-order elasticity
moduli Acub and c̃155 in the matrix element of the three-phonon scattering processes. The
calculation of the absorption of the quasi-transverse mode t2 in the approximation of the pure
mode (the polarization vector of the mode t2 is replaced by the polarization vector of the pure
mode et2

0 = (cos θ/
√

2, cos θ/
√

2,− sin θ)) shows that in the case of the pure mode t2 the local
maxima considerably diminish near directions like [001] in InSb and GaSb and become as low
as 1.14 and 1.01, respectively (see figure 5(a), curve 4a). According to relevant estimates,
the maximum contribution of the longitudinal component to the absorption α∗

T L L t2(θ1, π/4)
of the quasi-transverse modes is 35% in InSb, 27% in GaAs, 20% in Ge, Si and GaSb and
11% in diamond. If the scattering by defects is concerned, the angular dependences of the
absorption change qualitatively (see figure 5(a), curves 4′ and 5′): the absorption α∗

it2(θ1, π/4)
is minimum in the [001] and [110] directions and is maximum at angles θ1 = π/4. The
absorption α∗

it2(π/4, π/4) equals 1.20, 1.17, 1.07, 1.26, 1.23 and 1.24 for Ge, Si, diamond,
InSb, GaSb and GaAs, respectively.

For the same mode, the angular dependences of the absorption α∗
T L L t2(θ1, π/4) in KCl

and NaCl and the crystals of the first group differ qualitatively for both the scattering by
defects and the Landau–Rumer relaxation mechanism. In the case of the scattering by
defects, the absorption α∗

it2(θ1, π/4) peaks in directions like [001] and becomes minimum at
angles θ1 = π/4 in the KCl and NaCl crystals (see figure 5(b), curve 6′). The absorption
α∗

i t2(π/4, π/4) equals 0.67 and 0.87 in KCl and NaCl, respectively. In the case of the
anharmonic scattering processes, the absorption α∗

T L L t2(θ1, π/4) reaches its maximum values
in directions like [111] and its minimum values in the [001] and [011] directions in the
KCl and NaCl crystals. The maximum absorption α∗

T L L t2(θ[111], π/4) is 87 and 27 in KCl
and NaCl respectively. It should be noted that in KCl the absorption α∗

T L L t2(θ[111], π/4)
proves to be a factor of 1.2 smaller than α∗

T L L t2(π/4, 0), while the minimum absorption
α∗

T L L t2(π/2, π/4) for this mode is 2.1 times smaller than α∗
T L L t2(0, π/4). Therefore, the

ultrasound absorption for this mode in KCl diminishes 182-fold on transition from the
[111] direction to [110]. Thus, the anisotropy of the absorption for the quasi-transverse
mode t2 is one order of magnitude larger in NaCl and two orders of magnitude larger in
KCl than it is in the Ge, Si and diamond crystals. The maximum contribution of the
longitudinal component to the absorption of the mode t2 equals 50 and 8% in KCl and NaCl,
respectively.

Let us consider how the angular dependences of the ultrasound absorption α∗
T t2(θ1, 0)

change with the temperature in the presence of the competition between isotopic and
anharmonic scattering processes. We shall take natSi crystals with the natural isotopic
composition (g = 2.01 × 10−4) as an example. It is seen from figure 6 (curves 1–5) that as the
temperature rises from 4 to 50 K in natSi crystals, the isotopic scattering lets the anharmonic
scattering processes have the dominant role and the angular dependences of the absorption
α∗

T t2(θ1, 0) change qualitatively. The change is most abrupt over the temperature interval of
4 K < T < 10 K when Tq = 4.8 K (corresponding to the ultrasound frequency of 100 GHz)
is comparable with the temperature. Curve 5 in this figure, which was calculated at T = 50 K,
practically coincides with the results obtained for the Landau–Rumer mechanism. It should
be noted that in Si crystals enriched to 99.983% in the 28Si isotope (g = 3.2 × 10−7) the
anharmonic scattering processes make the dominant contribution to the ultrasound absorption
at Tq = 4.8 K over the temperature interval of 4 to 50 K, while the angular dependences of the
absorption α∗

T t2(θ1, 0) are described by curve 5. Obviously, from the analysis of the ultrasound
absorption anisotropy in cubic crystals it is possible to determine the dominating mechanism
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Figure 6. Angular dependences of the absorption for the quasi-transverse mode t2 with the wave
and the polarization vector in the cube face plane in the natSi (g = 2.01 × 10−4) crystals in the
presence of the competition between isotopic and anharmonic scattering processes for a fixed energy
of ultrasonic quantum Tq = 4.8 K and different temperatures.

of ultrasound relaxation at a given temperature. For this purpose, one has only to measure
the absorption for the quasi-transverse mode t2 with the polarization vector in the cube face
plane in the [100] and [101] directions and find the coefficient α∗

T t2(π/4, 0). If the inequality
1 � α∗

T t2(π/4, 0) � 1.25 is fulfilled, the isotopic scattering makes the major contribution
to the ultrasound relaxation in Si crystals. If α∗

T t2(θ1, 0) is less than unity and tends to 0.33,
the dominant contribution to the ultrasound relaxation in Si crystals is due to the anharmonic
scattering processes.

4. Discussion

The analysis demonstrated that the anisotropy of the absorption of quasi-transverse modes in
the crystals of the first type is a maximum in diamond. This maximum anisotropy is due
mainly to the anisotropy of the third-order elasticity moduli since the anisotropy of the second-
order elasticity moduli decreases in going from Ge to Si and then to diamond [20]. The
anomalously large anisotropy of the absorption of quasi-transverse modes in the KCl and NaCl
crystals is caused by the anisotropy of the anharmonic energy of the crystals. The point is that
the absorption of the ultrasound propagating along the cube edges is contributed only by the
terms proportional to the third-order elasticity moduli Acub and c̃155 (see formula (21)), which
have opposite signs in these crystals (see table 1). Therefore, their contributions are mutually
compensated to a large extent and, as a result, the ultrasound absorption in these directions
should be anomalously small as compared to the absorption in Ge where such compensation
is not realized. However, the second-order elasticity moduli and, correspondingly, the sound
velocity are much smaller in these crystals than those in Ge. For this reason, the coefficient
B0 in KCl and NaCl is nearly two orders of magnitude larger than B0 in Ge. These two
opposing factors have the effect that the ultrasound absorption in this direction in the KCl,
NaCl and Ge crystals is of the same order of magnitude (see table 2). On the other hand,
the absorption of the quasi-transverse modes propagating in directions like [101] and [111] is
contributed not only by the terms proportional to the third-order elasticity moduli Acub and
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c̃155, but also by those proportional to the moduli c̃111 and c̃112 (see formula (11)). Therefore, in
crystallographic directions like [101] and [111] such compensation is not realized in the matrix
element of the three-phonon scattering processes (see table 1) and, because of the coefficient
B0, the ultrasound absorption in these directions in KCl and NaCl is two orders of magnitude
higher than in Ge.

It should be noted that the angular dependences of the ultrasound absorption α∗
T L L (θ, ϕ) in

GaAs, which are calculated using values of the third-order elasticity moduli from [28, 29], differ
qualitatively. This behavior of the ultrasound absorption in GaAs is explained by a different
character of the anharmonic energy anisotropy, which is determined using the data [28, 29].
The point is that the third-order elasticity moduli Acub and c̃155 have the same (negative)
signs according to [28] and are opposite in sign according to [29] (see table 1). Therefore,
angular dependences of the ultrasound absorption, which are calculated from the data [28],
have the same shape for all transverse modes in GaAs as in Ge crystals (see figures 2(a)–
4(a), curves 1). In this case, a sharp maximum is realized in directions like [100], while the
values are minimum in directions like [101] and [111]. By contrast, the third-order elasticity
moduli Acub and c̃155 have opposite signs according to [29] and angular dependences of the
ultrasound absorption have the same shape for transverse modes in GaAs as in InSb and
GaSb crystals (see figures 2(a)–4(a), curves 4 and 5). In this case, local minima occur in
directions like [100], while the ultrasound absorption reaches its maximum values at the angles
θ1

∼= nπ/2 ± βt (n = 0, 1, 2), where βt � 1. Thus, at small θ1 the ultrasound absorption in
GaAs is a decreasing function of the angle θ1 as calculated from the data [28] and an increasing
function of the angle θ1 as calculated from the data [29]. It should be noted that values of the
ultrasound absorption in [100] directions differ by a factor of nearly two as calculated from
the data [28, 29] (see table 2). Anisotropies of the ultrasound absorption by transverse modes
are different too: for example, for mode t2 with the wavevector in the cube face plane the
absorption α∗

T L L t2(π/4, 0) is 0.16 and 0.27 as calculated from the data [28, 29] respectively.
The aforementioned behavior of the ultrasound absorption, which is calculated using values
reported in [28, 29], calls for experimental verification of the third-order elasticity modulus
values determined in [28, 29]. Thus, a conclusion follows from the above analysis that the
characteristic types of angular dependences of the ultrasound absorption in cubic crystals are
determined not only by values of the second-order elasticity moduli, but also by the relation of
values and signs of the third-order elasticity moduli, which determine the anharmonic energy
of the crystals.

In this study we only consider the volume absorption of transverse long-wave ultrasound.
The boundary scattering of phonons is always present in samples of finite dimensions. This
scattering is important for relaxation of the acoustic wave momentum at low temperatures: it
makes a temperature-independent contribution to the ultrasound absorption. If this contribution
is larger than the contribution from the scattering by defects at low temperatures, the specific
features of the ultrasound absorption, which are related to the relaxation mechanisms under
study, will not be observed in these crystals. The role of the boundary scattering is discussed
more comprehensively in [13].

5. Conclusion

We have analyzed angular dependences of the quasi-transverse ultrasound absorption in cubic
crystals with positive and negative anisotropies of the second-order elasticity moduli. The
effect of the cubic anisotropy on the spectrum and polarization vectors of vibration modes
was taken into account. Two most important cases—wavevectors of phonons are in the cube
face plane or the diagonal planes—were considered in terms of the anisotropic continuum
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model. Known values of the second- and third-order elasticity moduli were used to calculate
parameters determining the ultrasound absorption in the crystals under study. The anisotropy of
the transverse ultrasound absorption in the presence of the competition between the point defect
and anharmonic scattering processes was analyzed. It was shown that the angular dependences
of the transverse ultrasound absorption are inverse for the anharmonic scattering processes
and the scattering by defects. Therefore, the dominant mechanism of ultrasound relaxation
can be determined by analyzing the ultrasound absorption anisotropy in cubic crystals. The
analysis demonstrated that the angular dependences of the transverse ultrasound absorption
in cubic crystals with positive (Ge, Si and diamond) and negative (KCl, NaCl) anisotropies
of the second-order elasticity moduli differ qualitatively for the Landau–Rumer relaxation
mechanism. The absorption anisotropy in the crystals of the second type is one order (NaCl)
and two orders of magnitude (KCl) larger than it is in Ge, Si and diamond. It was shown
that that the angular dependences of the ultrasound absorption in GaAs, which are calculated
using values of the third-order elasticity moduli from [28, 29], differ qualitatively. This
behavior of the ultrasound absorption in GaAs is explained by a different character of the
anharmonic energy anisotropy, which is determined using the data [28, 29]. The contributions
of longitudinal components of quasi-transverse vibrations to the absorption of quasi-transverse
modes were estimated. They are in qualitative agreement with results of the analysis of
polarization vectors performed in [20].
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Appendix A

Let us consider the phonon spectrum of a cubic crystal using the anisotropic continuum
model [1, 2]. This model implies that a phonon wavevector q is much smaller than the Debye
wavevector qd and that the spectrum of phonons with polarization can be written as

ωλq = Sλ(θ, ϕ)q. (A.1)

The spectrum anisotropy is determined by the anisotropy of the phase velocity Sλ(θ, ϕ), which
depends on the angles θ and ϕ of the vector q. In the coordinates measured along the cube
edges, the polarization vector components e j and the phonon spectrum of a cubic crystal can
be determined from a set of equations [1] which, in the Simons designations [30], can be written
in the form ∑

j

e j{(ni n j − εδi j)+ (k − 1)ni n j (1 − δi j)} = 0. (A.2)

Here, n j = q j/q are the projections of the phonon unit vector n = (sin(θ) cos(ϕ),

sin(θ) sin(ϕ), cos(θ)) onto the coordinate axes, k = c12+c44
c11−c44

, ε = S(θ,ϕ)2ρ−c44

c11−c44
, ci j are the second-

order elastic moduli. The parameter k − 1 characterizes the elastic anisotropy of cubic crystals.
From the condition of existence of a nonzero solution to the set of equations (A.2),

ε3 − ε2 − (k2 − 1)εξ − (k − 1)2(2k + 1)η = 0 (A.3)
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(where ξ = n2
1n2

2 + n2
1n2

3 + n2
2n2

3, and η = n2
1n2

2n2
3 are cubic harmonics), we can find the phase

velocity for the acoustic branches of the phonon spectrum:

Sλ(θ, ϕ) =
√

c44

ρ

(
1 + c11 − c44

c44
ελ

)1/2

, ελ = 1
3 + zλ. (A.4)

For longitudinal (L) and transverse (t1, t2) phonons, the quantities z

zL = 2r cos
Q

3
, zt1,t2 = 2r cos

(
Q

3
∓ 2π

3

)
,

r = 1
3

√
1 + 3(k2 − 1)ξ, cos Q =

{
1 + 4.5(k2 − 1)ξ + 13.5η(1 − 3k2 + 2k3)√

(1 + 3(k2 − 1)ξ )3

}
.

(A.5)

The solutions εt1 and εt2 to the cubic equation (A.3) given by equations (A.4) and (A.5)
correspond to fast and slow transverse vibrational modes (upper and lower branches,
respectively). Substituting equations (A.4) and (A.5) into the set of equations (A.2), we can
determine the phonon polarization vectors of various vibrational branches to be

eλj = 1

Aλ

{
n j

ψλj

}
Aλ = ±

√√√√∑

j

n2
j

(ψλj )
2
, (eλn) = 1

Aλ

∑

j

n2
j

ψλj
,

ψλj = ελ + (k − 1)n2
j .

(A.6)

It is easy to verify that the polarization vectors satisfy the relations
(
eλ, eλ

′) = δλ,λ′ .

It follows from equations (A.2)–(A.6) that the dimensionless parameter k−1 = �C/(c11−c44)

(where �C = c12 + 2c44 − c11) determines the influence of elastic anisotropy of cubic crystals
on the spectrum and polarization vector of the phonon in cubic crystals [20]. These results have
been used to compute ultrasonic absorption in cubic crystals.

Appendix B

The expression for the elastic energy of cubic crystals up to the third order terms with respect
to the deformation tensor components is obtained in [31]. We transform it analogously
to [2]. Then the matrix element V λ1λ2λ3

q1q2q3
, determining the probabilities of various three-phonon

scattering processes in terms of the elastic moduli of the second and third order, can be
written [12]

V λ1λ2λ3
q1q2q3

= c̃111

∑

i

e1i q1i e2i q2i e3i q3i + c123(e1q1)(e2q2)(e3q3)+ c̃112

∑

i

[(e1q1)e2i q2i e3i q3i

+ (e2q2)e1i q1i e3i q3i + (e3q3)e1i q1i e2i q2i ]
+ c144[(e1q1)(e2q3)(e3q2)+ (e2q2)(e1q3)(e3q1)

+ (e3q3)(e1q2)(e2q1)] + (c12 + c144)[(e1q1)(e2e3)(q3q2)

+ (e2q2)(e1e3)(q3q1)+ (e3q3)(e1e2)(q1q2)]
+ c456[(e1q3)(e2q1)(e3q2)+ (e1q2)(e2q3)(e3q1)]
+ (c44 + c456)[(e1q2)(q1q3)(e2e3)+ (e2q3)(q1q2)(e1e3)

+ (e3q1)(q2q3)(e1e2)+ (e1q3)(q1q2)(e2e3)

+ (e2q1)(q2q3)(e1e3)+ (e3q2)(q1q3)(e1e2)]
+ c̃155

∑

i

{e1i e2i e3i(q1i(q2q3)+ q2i(q1q3)+ q3i(q1q2))
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+ e1i q1i[e2i q3i(e3q2)+ e3i q2i(e2q3)]
+ e2i q2i[e1i q3i(e3q1)+ e3i q1i(e1q3)] + e3i q3i[e1i q2i(e2q1)+ e2i q1i(e1q2)]}
+ [c̃155 −�C]

∑

i

q1iq2i q3i [e1i(e2e3)+ e2i(e1e3)+ e3i(e1e2)] (B.1)

where ci jk are the thermodynamic moduli of the third order in the normalization introduced by
Brugger [32]. The contributions containing the elasticity moduli c̃111, c̃112, c̃155 and �C are
typical of cubic crystals and distinguish them from the isotropic medium. Equality to zero of
these moduli provides a transition to the isotropic medium model. In this case one can obtain
the expression for the energy density for the isotropic medium caused by anharmonic lattice
vibration (see formula (4.22) of [2]).
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